
18/9/2007 I2A 98 slides 9 1 Richard Bornat
Dept of Computer Science

Saving space: a circular shift algorithm.

Consider the problem of shifting the elements of a
large array ‘circularly’ by some significant distance.

section 1 section 2 before

aftersection 1section 2

I emphasise size and distance, because this is
fundamentally a problem about space, and it becomes
interesting only when we have a large problem.

18/9/2007 I2A 98 slides 9 2 Richard Bornat
Dept of Computer Science

I presume that we have some position p at which the
array should be divided:

0 p n

section 1 section 2

The predicate calculus specification is
straightforward:

!
" " # $ % +[] = []()&
" < # $ %[] = []()

'

(
)

*

+
,i

i p A n p i A i

p i n A i p A i

0

This is not at all a mysterious program to write, if we
have a spare array to hand:

type[] B = new type(A.length);
for (i=0; i<p; i++) B[A.length-p+i]=A[i];
for (i=p; i<n; i++) B[i-p]=A[i];
for (i=0; i<A.length; i++) A[i]=B[i];

This program is O N() in time and O N() in space.

But we may not always have that much space.

18/9/2007 I2A 98 slides 9 3 Richard Bornat
Dept of Computer Science

The space problems can be reduced a little:

type[] B = new type(p);
for (i=0; i<p; i++) B[i]=A[i];
for (i=p; i<n; i++) A[i-p]=A[i];
for (i=0; i<p; i++) A[A.length-p+i]=B[i];

Now it’s O p() in space, and a little quicker in
execution (less copying). We have a better bound on
the time: it’s O N p+().

But we still have a program which uses too much
space: in the worst case p can be close to N.

We might reduce the worst case space usage to N 2,
but this program will always have a space problem.

There is a better way.

18/9/2007 I2A 98 slides 9 4 Richard Bornat
Dept of Computer Science

Trading speed for space.

I shall abandon, for a while, the search for a faster
solution.

We can save space by moving things around more
often.

Suppose that p n p" % : that is, the left section is the
smaller.

Then we might begin by swapping A p0 1.. % with
An p n% %.. 1:

0 p n

section 1 section 2
(left) before

after

n-p

section 2
(right)

0 p n

section 1section 2
(left)

n-p

section 2
(right)

We can do that work using only one extra variable (to
implement the swap operation):

for (i=0; i<p; i++) A[i]<->A[n-p+i];

18/9/2007 I2A 98 slides 9 5 Richard Bornat
Dept of Computer Science

Now of course if section 2 is the smaller, it won’t
work because of overlap: but then we can do
something very similar to swap section 2 into place:

0 p n

section 2section 1
(right) before

after

n-p

section 1
(left)

0 p n

section 2 section 1
(right)

n-p

section 1
(left)

for (i=0; i<n-p; i++) A[i]<->A[p+i];

18/9/2007 I2A 98 slides 9 6 Richard Bornat
Dept of Computer Science

In either case we have reduced the problem to that of
reordering the left and right parts of section 2 (first
case) or section 1 (second case) – clearly a case for
repetition.

Here’s the whole program. Amazingly enough the
end-limits m and n vary, but the boundary p always
stays in the same place!

for (m=0, n=A.length; m!=p && n!=p;) {
 if (p-m<=n-p) { // shift section 1
 for (i=0; i<p-m; i++) A[i+m]<->A[n-p+i];
 n=n-(p-m); // section 1 is in place
 }
 else { // shift section 2
 for (i=0; i<n-p; i++) A[i+m]<->A[p+i];
 m=m+(n-p); // section 2 is in place
 }
}

18/9/2007 I2A 98 slides 9 7 Richard Bornat
Dept of Computer Science

This program doesn’t use much space – O 1(), because
of the variables i, m, n and p, plus the variable needed
for the swaps – but it does a lot too much work.

Each swap takes three assignments; each time we
shift a section into place we put a similarly-sized
section in the wrong place (unless p divides the
interval m n.. exactly in half).

We can do better ...

18/9/2007 I2A 98 slides 9 8 Richard Bornat
Dept of Computer Science

A perfect circular shift.

What should move into A0? Why, Ap. And what
should move into Ap? Why, A p2 ... and so on, till we
fall off the end of the array because j p n× > .

We don’t have to stop there. Ai should be replaced by
Ai p+ , if that’s within the array, or else by Ai p n+ % –
because it is a circular shift! And so on, till we get
back to A0 again.

In a complicated multi-way exchange you only need
on temporary variable! Here’s a bit of program which
does the job:

type t=A[0];
for (i=0, j=p;
 j!=0;
 i=j, j = j+p<n ? j+p : j+p-n)
 A[i]=A[j];
A[i]=t;

This program moves quite a bit of the array around,
and it only uses variables i, j and t.

18/9/2007 I2A 98 slides 9 9 Richard Bornat
Dept of Computer Science

But if p divides n exactly this program won’t do the
whole problem: if p n= ÷ 2 it only exchanges A0 and
Ap; if p n= ÷ 3 it only rotates A0, Ap and A p2 ; and so
on.

And if p and n have factors in common this program
won’t solve the whole problem. In fact if the greatest
common divisor of p and n is q then this program will
move exactly n q÷ things. But then the nice thing is
that we can use the same idea, starting again with A1

...

Here’s the complete program:

for (m=0, count=0; count!=n; m++) {
 type t=A[m];
 for (i=m, j=m+p;
 j!=m;
 i=j, j = j+p<n ? j+p : j+p-n, count++)
 A[i]=A[j];
 A[i]=t; count++;
}

18/9/2007 I2A 98 slides 9 10 Richard Bornat
Dept of Computer Science

That program only uses variables i, j and t; it does
O n() assignments; it does the ‘extra’ assignment
t=A[m] only gcd ,n p() times.

If p n= ÷ 2 then it has no advantage over the earlier
segment-swapping program, but in all other cases it
does a lot less work.

A proof that it works is remarkably difficult ...

